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1. PLASMONIC NEAR FIELD PLATES AT OPTICAL FREQUENCIES 

We designed a near field plate (NFP) structure for deep subwavelength super-focusing at optical frequencies [1]. The 
method used antisymmetric surface plasmon modes to generate an abrupt π phase change within a small fraction of a 
wavelength, while varying the thin metallic film thickness to control the amplitude profile of the near field distribution. 
Numerical simulations show a λ/5 resolution at the focus for a NFP operating at the wavelength of 1550nm, which is 
due to the superposition of the near field phase and amplitude distribution. To produce super-focusing by using a NFP, 
two important requirements need to be satisfied: (i) alternating phase (or field polarity) between neighboring elements 
to remove the background field for high contrast and (ii) amplitude modulation of the electromagnetic field exiting the 
NFP. So far, the NFP concept was verified experimentally at microwave frequencies by using capacitive and inductive 
elements to modulate the surface impedances of a planar structure, and a focus resolution of λ/20 of the wavelength 
was obtained [2]. 

We proposed a practical design of a NFP that operates at 
optical frequencies by using a thin metallic film-based 
plasmonic structure, which explores an antisymmetric sur-
face plasmon mode to generate the required abrupt phase 
modulation for super-focusing. The proposed plasmonic 
structure is shown in Fig. 1(a). The basic building block of 
the structure is illustrated in the insert of Fig. 1(b). It con-
sists of two functional regions: a thin metallic film and a 
metallic slit waveguide. The function of the metallic film of 
varying thickness is to modulate the amplitude of the 
transmitted light through attenuation, and the field trans-
mitted though the film will excite the antisymmetric surface 

FIG. 1. (a) Schematic structure of the plasmonic NFP. (b) 
The principle of amplitude and phase modulation with the 
proposed building block that constitutes the NFP. Plotted is 
the transmission amplitude through the metallic film region 
versus its thickness. The inset shows the antisymmetric mode 
excited in the metallic slit structure (metal-air-metal).  
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plasmon mode in the metallic slit waveguide to generate a π phase difference at the opposite edge of the metallic wall. 
Provided that the unit cell of the structure is much smaller than a wavelength and its period is equal to the required 
sample interval (e.g. λ/10), the specific near field phase and amplitude distribution required for NFP can be fulfilled.  

FDTD numerical simulations were performed to verify the performance of the designed NFP for TM polarized light. 
Fig. 2(a) shows the total electric field intensity distribution along the wave propagation path of the device, obtained by 
adding the |Ex|2 and |Ez|2 components, which clearly reveals a focus spot after the exit surface. The detailed total electric 
field intensity at a focal point 100 nm away from the exit surface is plotted in Fig. 2(b). It can be seen from Fig. 2(a) 
and 2(b) that the focus is formed as expected and with the FWHM of 300nm, i.e., λ/5. The intensities of the side lobes 
are relatively high as compared with the predicted ones. This is mainly due to the excitation of surface plasmons trav-
eling along the exit surface plane. In contrast, the corresponding |Ex|2 distribution presents a better focusing with very 
low side lobes. This design provides a convenient way to realize the NFP at optical frequencies through conventional 
micro-fabrication technology such as electron beam lithography and focused ion beam etch. In addition, the method 
can be extended to three dimensional (3D) designs to provide point super-focusing rather than the subwavelength line 
of the 2D case. The design strategy is very similar except that, for generating the antisymmetric mode required for NFP: 
in 3D super-focusing, one should 
employ the concentric metallic 
grooves in the unit cell, and set the 
incident light to radially polarized 
state to mimic the TM light for 
each concentric groove. Since the 
radially-polarized light has higher 
spatial symmetry than linearly po-
larized light, we believe that the 
point-focusing of the 3D case will 
have better resolution than the 
line-focusing in 2D.  

 

2. PLASMONIC FILTERS FOR SPECTRAL IMAGING 

Another application of the anti-symmetric mode in a metal-dielectric (insulator)-metal (MIM) structure was developed 
for high resolution spectral filtering [3]. The dispersion of such a structure with proper choice of dielectric layer thick-
ness and refractive index can provide a linear relationship between the frequency and the wave vector in the visible 
range. We utilized this property of the MIM stack and designed a linear array of slits that cut into the stack for the pur-
pose of coupling incident light to the surface plasmon modes in the MIM structure (Fig. 3).  
 

FIG. 2. (a) Total electric field intensity distribution along the wave propagation path 
of the NFP. (b) Cross section of the total electric field intensity at the focal plane, i.e., 
100 nm away from the exit surface. 
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Since the structure acts as a 
nanoresonator and the wavelength 
can be selectively coupled in and 
scattered out of the array of resona-
tors via the 1D grating, transmission 
color filtering can be accomplished, 
as demonstrated in Fig. 4. There are 
unique advantages of this physical 
element based color filter. First, we 
note that it is capable of extremely 
high resolution; only a few slits that 
cover a lateral dimension of 1µm can 
already show well-defined colors. 
Based on this finding, we demonstrated spectral dispersing with what is likely the smallest element to date; see Fig. 5(a) 
and (b). Another advantage is the fact that the transmitted light is naturally polarized. Thus, in the context of LCD dis-
plays, a separate polarizer sheet is not needed. In 
addition, light of orthogonal polarization can be re-
flected by the metal grating and recycled to double 
the transmission efficiency. The special polarization 
property and the pitch-dependent color filtering can 
be combined in a specially designed spoke structure, 
where the polarization state of light can be visually 
determined easily; Fig. 5(c) and (d). This provides 
an opportunity for real time polarimetric information 
in spectral imaging, or it can be used as a microscale 
polarization analyzer. 

 

3. LIGHT FUNNELING IN PLASMONIC NANOSTRUCTURES 

We have explored a new approach to focus light into deep subwavelength dimensions. The technique is capable of ef-
fectively funneling the incident light to slits of only tens of nm. Specifically we can control the light localization in a 
~ 1/20 wavelength region with considerable freedom of design in both spectrum and spatial domain. 

FIG. 4. (a) Optical microscopy images of seven plasmonic color 
filters illuminated by the white microscope light. Scale bar is 
10 µm. (b) Experimentally measured transmission spectra of three 
fabricated color filters corresponding to the RGB colors under both 
TM and TE illuminations. 

FIG. 3. (a) Schematic diagram of the proposed plamonic nano-resonators. Inset: SEM 
image of the fabricated device; scale bar is 1µm. (b) Plasmon dispersions in a MIM 
stack array. Red, green and blue dots correspond to the case of filtering primary RGB 
colors. Red and blue curves correspond to antisymmetric and symmetric modes, re-
spectively. 
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The funneling concept in plasmonic nano-grooves 
provides a unique way to understand the light-matter 
interaction in subwavelength scales, and it is be-
lieved to be responsible for the nearly perfect ab-
sorption of periodic metallic nanoslit structures. 
However, an outstanding question remains: is it pos-
sible for light to funnel into a single nano-groove 
effectively and, if so, what is the effective cross sec-
tion of such funneling process? Understanding these 
phenomena can unambiguously determine the fun-
neling properties in plasmonic structures and facili-
tate the design of plasmonic devices.  

We experimentally studied the optical funneling 
properties of single, double and periodical 
nano-grooves to gain a microscopic understanding of 
light funneling. For a single nano-groove, we ob-
served a pronounced funneling effect for a single 
nano-groove, and were able to determine the effec-
tive funneling range which is slightly smaller than 

the wavelength of the incident light. This allowed us to quantitatively characterize the funneling capacity of individual 
nano-grooves. Secondly, we studied funneling into double nano-grooves and investigated the effect of coupling be-
tween the slits. We elucidated that the coupling originates from the scattered surface wave from each groove, and es-
tablished a model to reveal the underlying cou-
pling process based on experimental results. Fi-
nally, we extended the work to periodic 
nano-grooves, which involve collective micro-
scopic processes of light funneling into a single 
groove and coupling between double 
nano-grooves. 

Figure 6 shows the single slit structure fabricated 
on a thick Au film with ultrasmooth surface to 
eliminate the possibility of surface plasmon exci-
tation by surface roughness. The reflection spec-
tra for grooves of different depths were per-

FIG. 6. Experimental structure to demonstrate funneling of light into a single 
plasmonic nano-groove. SEM image of the single nano-groove on ultra-flat 
gold film; and measured reflection spectra for different grove depths. 
 

FIG. 5. (a) SEM image of the 1D plasmonic spectroscope with grad-
ually changing periods from 400 to 200 nm (from left to right); scale 
bar is 2µm. (b) Optical microscopy image of the plasmonic spectro-
scope illuminated with white light. (c) SEM image of the fabricated 
2D spoke structure. Scale bar is 3 µm. (d) Optical microscopy imag-
es of the spoken structure illuminated with unpolarized (center) and 
polarized light (4 boxes). 
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formed by FTIR. The results show pronounced reflection dips for single plasmonic grooves, which provides a direct 
evidence of the existence of resonance cavity mode in individual nano-grooves. We found that the reflection dip wave-
length fulfills the condition 2∫ 𝑛𝑛eff(𝑥𝑥)d𝑥𝑥ℎ

0 = (𝑚𝑚 − 1/2)λ𝑚𝑚, where h is the groove depth, m is an integer and neff is the ef-
fective index of the guided surface plasmon mode inside the nano-groove. We found that the nano-groove can absorb 
~16 times more light compared with the radiation that impinges directly onto the groove opening. This means that the 
groove has an effective absorption cross section that is much larger than its physical size. This is the result of light 
funneling around the highly subwavelength structure. This observation demonstrates that light funneling can occur for 
a single nano-groove, without any grating structure. In order to further explore the funneling capacity, we carried out 
numerical simulations using COMSOL Multiphysics. This software is based on the Finite Element Method (FEM) and 
use TM polarized illumination. The simulated magnetic field intensity distribution reveal the first order (Figure 7a) and 
second order (Figure 7b) F-P resonance at the corresponding reflection dip wavelength. In Figure 7c, we plot the total 
electric field vectors distribution at the first-order F-P resonance wavelength of 2.93 µm. One can see that the polarized 
charge at the edge of metallic structure dominates the electric field distribution, creating a field profile very similar to 
the fringing field lines of a finite size parallel capacitor. In fact, since the structure is much smaller than a wavelength, 
the electrostatic approximation can be used to qualitatively understand the funneling effect. From electromagnetic point 
of view, the electric field distribution produced by the polarization charge can bend the energy flow characterized by 
the Poynting vector 𝑆𝑆 = 𝐸𝐸�⃗ × 𝐻𝐻��⃗ , where the total electric field is shown in Figure 7c; the magnetic field is perpendicular 
to the screen. As a result, the energy flow represented by the Poynting vector is orthogonal to the contours of the elec-
tric field. This model agrees well with the simulated time averaged power flow shown in Figure 7d. 

The effective funneling range deduced from the experiments 
clearly suggests that the funneling capacity of a nano-groove is 
slightly smaller than one wavelength, and that the ratio δDfunnel/
δλ should be a universal ratio due to the scaling laws in electro-
magnetism. To verify this, we performed a set of measurements on 
nano-grooves with varying depths. Since each nano-groove has a 
corresponding F-P resonance wavelength, we plot the effective 
funneling range versus the resonance wavelength in Figure 8b. As 
expected, the effective funneling range increases linearly with the 
increase of resonance wavelength and its slop δDfunnel/δλ  has a 
constant value of 0.675. This effect can explain why the reflectivi-
ty at the dip in Figure 6 decreases linearly with the increase of 
groove depth, since for longer resonance wavelength the effective 
funneling range depicted in Figure 8a is larger and therefore the 
reflection will decrease for a fixed incident beam width.  

FIG. 7. (a) Simulated magnetic field intensity distribution 
at the first order F-P resonance wavelength of 2.93 µm. (b) 
Simulated magnetic intensity distribution at the second 
order F-P resonance wavelength. (c) Simulated electric 
filed vector distribution at first order F-P resonance. 
wavelength. (d) Simulated power flow distribution at first 
order F-P.  

5 | P a g e  
 



We also investigated the coupling between multiple nano-grooves. We fabricated a series of double nano-groove struc-
tures with constant depth of 550 nm and varied spacing from 0.6 µm to 6.2 µm; see Figure 9(a). The reflection spectra 
for selected groove spacings are shown in Figure 9(b) with fixed illuminating beam width of 20 µm. When the 
nano-groove spacing increases from 0.8 µm to 2.8 µm, the main features of the spectra are similar to that of 550 nm 
single groove spectrum shown in Fig. 10(b). However, the first order F-P resonances around 2.6 µm vary in wavelength 
and reflectivity for different grooves spacing, which is definitely due to the coupling between the nano-grooves. To 
reveal the coupling mechanism, we extracted 
the wavelength of the first-order resonance 
and the corresponding reflection coefficient 
for every structure. Fig. 10c shows the reflec-
tivity versus the groove spacing. This shows (1) 
a rapid decay at the beginning when the spac-
ing between the two grooves increases, fol-
lowed by (2) an oscillatory behavior with pe-
riod of 2.7 µm, i.e., approximately one wave-
length, and finally (3) saturation when the 
spacing between the groove is large enough. 
Based on these features, the reflectivity can be 
described by the phenomenological expression 

𝑅𝑅 = 𝐴𝐴𝑒𝑒−𝐵𝐵𝐵𝐵 + 𝐶𝐶 sin(𝐷𝐷𝐷𝐷)
𝑥𝑥

+ 𝐸𝐸   (1) 

where x is the spacing between the two 
grooves, and A, B, C, D and E are fitting pa-
rameters with the following physical meanings: 

FIG. 8. Effective funneling range measurement. (a) Schematic of experiment setup and the illustrative of two 
functional ranges: total funneling and total reflecting. (b) Deduced effective funneling range for various grooves 
with different depths 

 

(a) (b) 

FIG. 9. Coupling between double nano-grooves. (a) SEM image of the double 
nano-grooves on a gold film. (b) Measured reflectivity for incident beam width of 
20 µm, with various grooves spacing. (c) Minimum reflectivity value versus the 
grooves spacing. (d) Resonance wavelength versus the grooves spacing.  
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(1) the first term denotes the overlap of the two 
funneling regions; such overlap can reduce the 
effective funneling range of the system and re-
sults in decreased absorption; (2) the second term 
accounts for a cylindrical wave that propagates 
on the surface, which is generated by the scatter-
ing of nano-grooves, and the phase of the surface 
wave determines the constructive and destructive 
interference between two grooves and therefore 
the overall reflectivity, and (3) the third term is a 
constant that denotes the reflection caused by 
two individual nano-grooves without any cou-
pling between them when the spacing is suffi-
ciently large. By fitting the experimental results, 
we can obtain the fitting parameters. In this case, 
A= 5.27, B= 0.275, C= 2.97, D= 2.143 and E= 
75.51. Based on the model proposed in Eq. (1), we can deduce that the wavelength corresponding to minimum reflec-
tivity is the superposition of single nano-grooves and the coupling between them λresonance = 𝐶𝐶sin(𝑑𝑑𝑑𝑑 + 𝜙𝜙)/𝑥𝑥 + λ0 
where λ0 is the resonant wavelength of the single nano-groove and the first term accounts for the coupling between the 
two grooves. In the first term, C is the weight of the coupling, d is related to the wave vector of the surface wave, and φ 
is the total phase shift cause by the scattering of the incident wave. The fitted resonance wavelength (with c = 0.1536, 
d = 2.211, φ=2.085, and λ0 =2.653) shown in Fig. 4d not only reproduces the features of the experimental data, but 
also matches quantitatively with each other; noting especially the matching of d =2.211 in the expression for 
λresonance to D=2.143 in Eq. (1), and λ0 =2.653 to the dip position at large groove spacings. The physics of the cou-
pling between the grooves and its role in determining the resonance wavelength is fairly clear from this analysis. Fi-
nally to understand the behavior of light funneling on geometry, we fabricated circular groves. The observations sum-
marized in Fig. 10 are consistent with those for linear slits.  

4. IMAGING WITH A MAXWELL FISH-EYE LENS 
Maxwell’s fish eye lens [4] is a sphere of radius R for which the refractive index varies according to 

2

2( )
1 ( / )

n r
r R

=
+

                (2) 

where r is the distance from the center of the sphere. Inside the lens, rays paths are circles and all rays from an object 
at rO converge at the image point at 2 2

I O O/ | |R= −r r r  [4]. The fish-eye lens has recently attracted much attention, 

FIG. 10. Funneling in circular nanogroves fabricated in Au films. 
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motivated by claims that it provides perfect imaging of electromagnetic waves, in an apparent violation of Abbe’s dif-
fraction limit [5]. In a series of papers [6,7,8,9,10.11], Leonhardt et al. have argued that the mirrored fish-eye gives 
unlimited resolution in two [6] and three dimensions [7], and responded to comments by Blaikie [12], Kinsler and Fa-
varo [13] and Merlin [14], who questioned various aspects of their proposal, particularly in regard to the meaning of 
electromagnetic drains [6,7,8], causality [8,14], image perfection [10,11], and the assertion that time-reversed sources 
can be represented by passive outlets [10]. We note that, using transformation optics methods, Benítez et al. [15] 
reached conclusions similar to those of Leonhardt et al. for scalar fields in lensing systems other than Maxwell’s 
fish-eye, whereas Guenneau et al. failed to observe deep subwavelength resolution in both Maxwell’s fish-eye and the 
Eaton lens [16]. 

We compared Maxwell’s fish eye to the mathematically simpler problem of a spherical mirror, and find strong similar-
ities in their imaging behavior. We used this analogy to show that the perfect focusing claimed by Leonhardt et al. [6,7] 
is not an intrinsic property of the fish eye lens, but merely the result of having placed an additional source at the image 
position. In this regard, their proposal is reminiscent of schemes relying on time-reversed sources to attain subwave-
length focusing [17,18]. The extra source leads to a resulting field pattern that imitates the behavior of a drain; see 
Fig. 11. Leonhardt et al. assert that drains are necessary to achieve a stationary state and that solutions without them 
violate causality [7]. In contrast, we find that the problem of a single dipole in an ideal spherical cavity does exhibit 
causal stationary states without the need for drains, and that the images obtained in that situation obey Abbe’s con-
straint. Disproving the belief that mirrors are not good analogues of Maxwell’s lens [10,11] our analysis shows that, as 
for the dispersionless fish eye, electromagnetic pulses do not experience shape distortion as they propagate in large 
spherical cavities. Finally, we showed that passive outlets can imitate drains, but only at a single frequency (this is 
consistent with recent study by Kinsler [19]) and under conditions that require fine tuning of parameters.  

Finally, we discussed the possibility that time-reversed sources may be replaced by passive outlets, addressing the 
claim by Leonhardt et al. [6] that Maxwell’s fish eye makes a perfect lens for electromagnetic waves but only when 
such waves are detected by perfect point detectors.” As we have shown, the spherical mirror has properties similar to 
those of the fish-eye lens. Can a passive detector at the origin lead to behavior that imitates a drain in the spherical 
mirror? As recent work has shown for the general case [19], the answer is yes, but only at a single predetermined fre-
quency. Here, we give an alternative argument. Detectors of dimensions ~   that are small compared with the wave-
length λ behave as particles in a uniform field [20]. Let Dp  be the electric dipole acquired by the detector and Dγ its 
electrical polarizability (we ignore magnetic effects). A calculation of the field at the origin, due to the induced cur-
rents at the mirror, gives (0) (0) zE=E e  where 3

0 D(0) (2 / 3) ( )E i Ak p p= + . A perfect drain-like pattern requires 
that D D 0(0) ip E p e Φ= γ = −  which gives 
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3
D 3 / 4i kγ = .                 (3) 

Since the polarizability is proportional to the volume of the detector, it is clear that this condition together with 

<< λ  can only be met in the vicinity of a high-Q resonance and at a single frequency. As an example, if we model 
the outlet as a sphere of radius rD and permittivity εD, the polarizability is 3

D D( 1) /( 2)rγ = ε − ε +  [20], and the rele-
vant resonance is that of the so-called surface plasmon. Thus, the condition set by Eq. (3) reads 3 3

D D2 4ik rε ≈ − + . 
Similar considerations apply to the microwave experiments reported by Ma et al. [21] in which the outlets were ab-
sorbers identical to the source and impedance-matched to the cables, which behaved as sources in reverse. It is im-
portant to note that, even if passive elements could be used for broadband operation, their associated drains would not 
provide subwavelength resolution. The reason is that the spatial dependence of the amount of radiation emitted or ab-
sorbed by the device would still be limited by diffraction effects and, as such, by the same signal-to-noise problems 
that arise when trying to resolve objects whose separation is smaller than that allowed by Abbe’s formula. 

5. TRANSMISSION OF WAVES THROUGH SMALL APERTURES 

It has been known for a long time that small holes, of dimensions 


, are ill suited for transmitting electromagnetic, 
acoustic or other disturbances of wavelength λ. The normalized transmittance, TN, i. e., the ratio between the power 
transmitted and that incident upon the hole, is 4~ ( / )λ . More recently, Ebbesen et al. [22] showed that periodic arrays 
of small apertures in a metallic film can lead to an extraordinary enhancement of the optical transmission. This im-
portant discovery has led to numerous ideas for applications in areas such as sensing, near-field microscopy and light 
harvesting, that can benefit from the concurrent enhancement of the electric field in the vicinity of the apertures.  

FIG. 11. A cartoon view of imaging in Maxwell’s fish eye and ellipsoidal mirrors. (a) A single dipole source gives dif-
fraction limited focusing. (b) The result of adding a second, time-reversed electric dipole at the position of the image is 
a field pattern that emulates that of a drain. 
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The mechanisms underlying extraordinary transmission for hole arrays are fairly well understood. In particular, the 
distinct and cooperative roles played by surface modes (plasmon polaritons) and waveguide or Fabry-Pérot-type reso-
nances are now well established; see: F. J. García-Vidal et al. [23]. The same cannot be said for single apertures. While 
the utilization of geometric and plasmon resonances to enhance the transmission of small, isolated openings has been 
considered before, a unified physical picture has not yet emerged. We introduced a simple yet comprehensive model of 
a closed-curve aperture coupled to an oscillator that gives perfect transmission, that is, 2

N ~ ( / )T λ , in the absence of 
all but radiative losses [24]. The model draws from ideas that have been hinted at but not fully treated in the engineer-
ing literature. It applies to openings in resonant cavities as well as to approaches involving LC and other geometric 
resonances for which the resonant wavelength decreases with the size of the aperture. We also give an example of res-
onant transmission through apertures with open-curve boundaries, which relies on the interaction with a localized TE 
state bound to a pair of pinholes in a two-dimensional waveguide [24]. This problem is related to the so-called sin-
gle-slit funneling [25] in that the key resonance is of 
the Fabry-Pérot type but, unlike funneling, the trans-
mittance does not decrease with decreasing slit width 
and exactly matches the incident power for arbitrarily 
small hole sizes [26]. In funneling and related cases, 
we find that resonant coupling to waveguide modes 
gives imperfect transmission, with transmitted powers 
that are on the order of those for single slits 
off-resonance.  
In a series of experiments, we showed that a pair of 
subwavelength slits in parallel conducting plates sup-
ports a localized electromagnetic mode bound to the 
slits, whose spatial extent is determined not by the 
plates’ size but by the slit dimensions; see Figure 12. 
This mode occurs for electric fields parallel to the slits 
and plate separation slightly smaller than half the 
free-space wavelength. Finite element calculations and 
experimental results at 10 GHz show that the localized 
mode gives rise to a strong, narrowband resonant en-
hancement of the transmission which, while limited by 
conduction losses in the plates, is a factor of 104 larger 
than for off-resonant transmission.  
  

FIG. 12. (a) Drawing of the aluminum cavity and waveguides used 
in the experiment. For clarity, the upper ground plane at y = h is not 
shown. (b) Measured (blue line) and calculated (red dots) power 
transmission coefficient from port 1 to port 2. (inset) Measured 
transmission when the open cavity ends are covered with conducting 
plates. 

10 | P a g e  
 



6. TOPOLOGICAL ELECTROMAGNETIC RESONATORS 

Resonant cavities (RCs) are devices used to confine light or other wave disturbances. They are broadly characterized 
by a set of quality factors Q, defined as the ratio between the frequency ω and the width δω  of a particular mode, and 
finesses /F = ∆ω δω , where ∆ω is the separation between adjacent modes. The most common implementation of a RC 
involves a region defined by a mirrored surface. Mirrorless RCs are also well known. Examples include natural sub-
stances which rely either on total internal reflection to give confinement close to the boundary (as for whispering gal-
lery modes [27]) and systems sustaining modes that lie outside the light cone such as, e. g., surface plasmons in metals. 
We have shown [28] that, in a narrow range of allowed frequen-
cies, photonic crystals (PCs) [29] behave as mirror-free RCs re-
gardless of their shape (this is unlike PC cavities resulting from 
defects, which operate at frequencies inside forbidden gaps [30]). 
Ignoring all but radiative losses, and for arbitrary dimensions, the 
corresponding states are surface-avoiding [31], extended modes 
that lie inside the light cone, with Q values on the order of 

( )3/L λ  and ~ /F L λ , where λ is the wavelength in vacuum and 
L >> λ is a typical length of the PC. Analogous results apply to 
plasmonic materials just above the plasmon frequency.  

The results in Fig. 13, for a square lattice of rods of radius r and 
lattice parameter a, illustrate the topological properties of a PC 
resonator. The permittivity of the host (rods) is ε1 (ε2). A plane 
wave with electric field perpendicular to the page impinges on the 
PC from the left. Fig. 13(b) and (c) show, respectively, the calcu-
lated absorption for the cases where the PC outer boundary is a 
circle and a bow tie The frequency range shown is in the vicinity of 
a band edge at the M point of the Brillouin zone. The PC parame-
ters are such that there is an optical gap in the range ωG ≈ 0.28

/ 2 0.42a c< ω π <
 

. The surface-avoiding, cavity modes manifest 
themselves as the narrow peaks which occur below and near the 
edge of the allowed band, at ω <



ωG, where the q-dependence of ω 
is quadratic. Contour plots of the field magnitude are shown for the 
two highest-lying modes (i) and (ii). It is apparent that their enve-
lopes are in a one-to-one correspondence with the profiles of a 
mirrored RC, which can be ordered according to the number of 

FIG. 13. Results for a square lattice of rods. (a) Param-
eters are ε

1
=1, ε

2
=12×(1+0.0001i) and r/a = 0.2. Ab-

sorption data for a finite PC defined by (b) a circle and 
(c) a bow tie. 
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zeros of the Dirichlet eigenfunctions. An analysis of these results show that the frequency separation between two ar-
bitrary peaks and their width scale, respectively, like 2D−  and 3D− , where D is the radius of the circle for (b) and an 
arbitrary length of the bow tie for (c). 

Surface-avoiding modes occur also in homogeneous substances and, in particular, plasmonic media immediately 
above the plasmon frequency where 0<Re(ε)<<1. With some modifications, the general analysis [28] can be applied 
to such systems. Inasmuch as the PC problem is the optical counterpart to that of a quantum particle in a periodic po-
tential, the plasmonic problem is analogous to that of a particle in the piecewise constant potential V =V0 > 0 and V = 0 
inside and outside Ξ , respectively. Consider now a plasmonic substance whose permittivity is given by  

( )2
0 0

2 2
0 i

∞
∞

ω ε − ε
ε = ε +

ω −ω + ωγ
 ,                                                               (4) 

where 0ε  and ∞ε  are, respectively, the static and high-frequency dielectric constants, 0ω  is the frequency and γ is 
the full width of the resonance. Close to Re(ε) = 0, and for 0γ << ω , the dependence of the frequency on the 
wavevector is of the form 2

P Aqω ≈ ω +  where A is a constant and ωP is the plasma or longitudinal-optical phonon 
frequency. Thus νG, 1n L−

Ξ ∝  and, as for PCs, we get 
that 3 3/ ~ / Lδω ω λ .  
Exact results support the existence of long-lived RC 
modes in plasmonic systems. Fig. 14 shows absorp-
tion by a sphere of radius R made of a substance 
whose permittivity is given by Eq. (4). Curves were 
calculated using the exact expressions for Mie scat-
tering [32]. The extended modes that set the sphere as 
a RC manifest themselves as the narrow peaks that 
occur just above Pω . As expected, the two lowest 
eigenmodes depicted in Fig. 14(b) show vanishing 
intensity at the surface of the sphere. As for PCs, the 
results at various radii shown in Fig. 14(c) indicate 
that the distance between peaks scales like 2R−  and 
that the widths of the peaks decrease as 3R−  with 
increasing radius. The latter behavior persists until one 
reaches the point where the radiative width becomes 
smaller than the non-radiative one after which the 
peak intensity diminishes strongly.  
 
  

FIG. 14.  (a) Absorption data for a sphere of radius R and permittiv-
ity given by Eq. (5); k

0
= ω

0
/c. (b) Contour plot of the electric field 

intensity for the two lowest eigenmodes. (c) Absorption as a function 
of  for various radii. Parameters are ε0=3, ε∞=2 and γ/ω

0
= 10-4 . 
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